If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x-x^2-10=0
We add all the numbers together, and all the variables
-1x^2+10x-10=0
a = -1; b = 10; c = -10;
Δ = b2-4ac
Δ = 102-4·(-1)·(-10)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{15}}{2*-1}=\frac{-10-2\sqrt{15}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{15}}{2*-1}=\frac{-10+2\sqrt{15}}{-2} $
| X²+7x=0 | | 2(3x-1)^2=0 | | X=84-(2x+4x) | | 2(x^2+20x+99)=0 | | 5-(2x-3)=9x+24 | | 5x^2-2=8 | | 3x-6=6x+7 | | -8=-2+2d | | x-0.16x=720000 | | x+8/5=9 | | x-0.16x=600000 | | 3m^2=-6m-21 | | (x/12)+(-0.15*x)=50000 | | x/12-0.15x=50000 | | 7x+5x-4x=48 | | 11n-19=109 | | 5(c+2)=0 | | 2x+x+x-1/6=190 | | (2t-3)^2=2t^2+5t-26 | | -4*(3+x)-2*(x-3)=0 | | 2(9x-7)=-77 | | 3x+5=2*(x-5) | | 33=1/2(x+2x+1)(x-4) | | 66=(3x+1)(x-4) | | (x2-5)(7x2-45+58x)=0 | | -x=15.5 | | -1x=15,5 | | 2(-3x+2)=5x+8 | | 3x÷5=11 | | (4y+3)^2-625=0 | | 3(x^2+4)+5=6(x^2+2x)+13 | | 2x+1=28-4x |